Aptamers are short single-stranded DNA or RNA molecules that fold into 3D shapes capable of binding specific targets (proteins, small molecules, cells) with high affinity and selectivity. The classic way to discover them is SELEX(Systematic Evolution of Ligands by EXponential enrichment): iterative rounds of binding, partitioning, amplification, and re-selection. What changed the field is high-throughput sequencing (HT-SELEX)—sequencing pools after each round—turning SELEX into a data-rich optimization problem where bioinformatics is no longer optional but central to identifying true binders, understanding enrichment dynamics, and avoiding artifacts. This article explains how bioinformatics for aptamer selection works end-to-end, what signals to extract from sequencing data, how to connect sequence to structure and function, and where modern machine learning fits—without relying on external case studies or outbound links. 1) Why Bioinformatics Matters in Aptamer Selection Traditional SELEX often ends with testing a handful of sequences from late rounds. HT-SELEX changes the game by giving you: Population-level visibility: you can track millions of sequences across rounds, not just a few clones. Early discovery: promising families can emerge before the pool looks “clean,” enabling earlier decision-making and fewer wet-lab rounds when combined with modeling. Artifact detection: PCR bias, sequencing errors, and “sticky” motifs can…
“Completion of SELEX” refers to the point in the Systematic Evolution of Ligands by EXponential enrichment (SELEX)workflow where iterative selection rounds have produced an enriched nucleic-acid pool (DNA or RNA) that contains high-affinity, high-specificity binding sequences (aptamers) for a defined target, and further rounds provide diminishing improvements. In practical terms, completion is less a single universal round number and more a decision point supported by enrichment evidence, performance metrics, and downstream readiness. 1) SELEX in One Picture (Why “Completion” Exists at All) SELEX is an iterative evolutionary loop performed in vitro: Start with a diverse library (randomized nucleic-acid sequences). Bind the library to a target (protein, small molecule, cell surface, complex mixture, etc.). Partition: separate binders from non-binders (the critical “selection” step). Elute and amplify the binders (PCR for DNA; RT-PCR for RNA). Repeat with increasing stringency (less target, harsher washes, counter-selection, etc.). “Completion” matters because every additional round costs time, introduces amplification bias, and can over-enrich “fast amplifiers” rather than “best binders.” Modern practice treats completion as an optimization endpoint, not a ritual number of rounds. 2) What “Completion of SELEX” Typically Means (Conceptual Definition) A common knowledge-centered definition is: The pool has converged toward one…