aptamer selection | aptamer screening service|selexkmdbio.com
Info Center
  • EXPERTISE IN APTAMERS TO SMALL MOLECULES: A Practical Knowledge Guide to Selection, Engineering, and Real-World Performance

    Small molecules are some of the most valuable—and most difficult—targets in molecular recognition. They include metabolites, drugs, toxins, cofactors, and signaling compounds that often weigh only a few hundred Daltons. Developing expertise in aptamers to small molecules means mastering a set of selection and validation strategies that differ substantially from protein-target aptamer work, because small molecules offer fewer contact points, weaker “handles” for separation, and more ways to generate false positives. This article explains how small-molecule aptamers are discovered, why selection is uniquely challenging, how advanced SELEX variants improve success rates, and what “good” looks like when you engineer an aptamer into a sensor, assay, or therapeutic concept.   1) What makes small-molecule aptamers special?   Aptamers are single-stranded DNA or RNA sequences that fold into 3D shapes able to bind a target through non-covalent interactions—hydrogen bonding, π–π stacking, electrostatics, and shape complementarity. For proteins, large surfaces provide many contacts, so binding can be robust even when the selection workflow is imperfect. Small molecules are different: Tiny binding interface: fewer interaction opportunities means affinity can be harder to evolve and easier to mis-measure.  Separation is tricky: in classic SELEX you often immobilize the target; immobilization can change the target’s presentation…

    2025-12-10
  • CELL-SELEX and Biomarker Discovery: A Practical, Knowledge-First Guide to Aptamer-Driven Target Finding

    CELL-SELEX (Cell-Based Systematic Evolution of Ligands by EXponential enrichment) is a selection strategy used to discover nucleic-acid aptamers—short single-stranded DNA or RNA molecules that fold into shapes capable of binding cellular targets with high affinity and specificity. What makes CELL-SELEX AND BIOMARKER DISCOVERY such a powerful pairing is that cell-SELEX can enrich binders against native cell-surface features (often membrane proteins, glycoproteins, lipids, or complex epitopes) without needing to know the target in advance. This is especially valuable in biomarker discovery, where the “best” marker may be unknown, heterogeneous, or highly dependent on the cellular context.    1) What CELL-SELEX Is (and Why It Matters for Biomarkers)   Traditional SELEX often starts with a purified target (e.g., a recombinant protein). In cell-SELEX, the “target” is a living cell population that represents a phenotype you care about—such as a disease subtype, drug-resistant cells, activated immune cells, or a specific differentiation stage. The selection process enriches aptamers that bind those cells while removing sequences that bind irrelevant or shared features. Why this matters for biomarkers: Native conformation is preserved. Cell-surface proteins keep their natural folding, post-translational modifications, and membrane context—features that can be lost in purified preparations.  Unbiased discovery. You can discover binding…

    2025-12-09
  • Aptamer Fields: A Practical Knowledge Guide to the Science, Tools, and Applications of Aptamers

    “Aptamer fields” can be understood as the interconnected research and application areas where aptamers—short, single-stranded DNA or RNA molecules—are designed and used as highly selective binding agents (often described as “chemical antibodies”) for targets ranging from proteins and small molecules to whole cells.  This article explains what defines the aptamer fields, how aptamers are created, where they’re used, and what technical trends are shaping the space.   1) What Are Aptamers (and Why They Matter in Aptamer Fields)?   Aptamers are typically ~20–100 nucleotides long and fold into 3D structures that bind specific targets with high affinity and specificity. Unlike antibodies (biological proteins), aptamers are nucleic acids, which affects how they are discovered, synthesized, modified, and integrated into devices.  Key reasons aptamers have become a “field” rather than a niche tool: Programmability: sequence-controlled design and chemical modification Manufacturability: scalable synthesis routes compared with biological production Versatility: diagnostics, biosensing, therapeutics, imaging, and research reagents      2) The Core Engine: SELEX and How Aptamers Are Discovered   Most aptamers are generated using SELEX (Systematic Evolution of Ligands by EXponential enrichment), an iterative in-vitro selection process that enriches sequences that bind a chosen target. In common workflows, a large random library is…

    2025-12-09
  • APTAMER METHODS: Modern Selection, Optimization, and Validation Workflows

    Aptamers are short single-stranded DNA or RNA molecules that fold into 3D structures capable of binding targets (proteins, small molecules, cells, or even complex particles) with high specificity and affinity. “Aptamer methods” usually refers to the full pipeline: library design → selection (SELEX) → enrichment monitoring → sequencing & bioinformatics → candidate optimization → biophysical/functional validation → stability engineering. Modern platforms improve speed and hit quality by combining smarter selection pressures with microfluidics and next-generation sequencing.  1) Core Aptamer Selection Method: SELEX (Systematic Evolution of Ligands by EXponential Enrichment)   1.1 Classical SELEX workflow (baseline method)   Start with a random oligonucleotide library (often 10^13–10^15 unique sequences) Incubate library with the target Partition bound vs unbound sequences Elute binders Amplify (PCR for DNA; RT-PCR + transcription for RNA) Repeat iterative rounds with increasing stringency until enrichment is achieved    Why it works: each round increases the fraction of sequences that can bind under the imposed conditions (buffer, temperature, competitor molecules, etc.). Why it’s hard: classical SELEX can be slow, labor intensive, and prone to amplification bias—hence the rise of “advanced SELEX” platforms.  1.2 “Stringency engineering” (how you make aptamers useful)   Selection success often depends less on the target itself…

    2025-12-08
  • CATALOG APTAMERS & REAGENTS: A Practical, Science-First Guide to What They Are and How to Choose Them

    “CATALOG APTAMERS & REAGENTS” usually refers to ready-to-order, pre-characterized aptamer affinity binders and the supporting assay reagents that make those binders usable in real experiments (e.g., labeling, immobilization, buffers, and controls). Aptamers themselves are short, single-stranded DNA or RNA (or related chemistries) selected from very large libraries to bind a specific target with high affinity and specificity—often described as antibody-like binding, but built from nucleic acids and produced by chemical synthesis.    1) What Are Aptamers (and Why They Matter as Reagents)?   Aptamers are single-stranded nucleic acids that fold into 3D structures capable of recognizing targets such as proteins, small molecules, ions, or even cells. They are typically discovered through SELEX (Systematic Evolution of Ligands by EXponential enrichment), an iterative selection process that enriches sequences that bind the desired target.  What makes aptamers especially “catalog-friendly” is that once a sequence is known, it can be reliably reproduced by chemical synthesis, and easily chemically modified (for example, adding a fluorophore or biotin) to fit common assay formats.    2) “Catalog Aptamers” vs Custom Aptamer Discovery   Catalog Aptamers (ready-to-order)   Catalog aptamers are fixed, known sequences that have been previously selected and are sold as standard products. Their main value…

    2025-12-08
  • Completion of SELEX: What It Means, How to Recognize It, and What Happens Next

    “Completion of SELEX” refers to the point in the Systematic Evolution of Ligands by EXponential enrichment (SELEX)workflow where iterative selection rounds have produced an enriched nucleic-acid pool (DNA or RNA) that contains high-affinity, high-specificity binding sequences (aptamers) for a defined target, and further rounds provide diminishing improvements. In practical terms, completion is less a single universal round number and more a decision point supported by enrichment evidence, performance metrics, and downstream readiness.  1) SELEX in One Picture (Why “Completion” Exists at All)   SELEX is an iterative evolutionary loop performed in vitro: Start with a diverse library (randomized nucleic-acid sequences). Bind the library to a target (protein, small molecule, cell surface, complex mixture, etc.). Partition: separate binders from non-binders (the critical “selection” step). Elute and amplify the binders (PCR for DNA; RT-PCR for RNA). Repeat with increasing stringency (less target, harsher washes, counter-selection, etc.).    “Completion” matters because every additional round costs time, introduces amplification bias, and can over-enrich “fast amplifiers” rather than “best binders.” Modern practice treats completion as an optimization endpoint, not a ritual number of rounds.  2) What “Completion of SELEX” Typically Means (Conceptual Definition)   A common knowledge-centered definition is: The pool has converged toward one…

    2025-12-07
  • SELEX Aptamer Selection: A Practical, Science-First Guide to How Aptamers Are Discovered and Optimized

    What “SELEX Aptamer Selection” Means   SELEX stands for Systematic Evolution of Ligands by Exponential Enrichment. In plain terms, SELEX aptamer selectionis an iterative laboratory workflow that starts with a huge pool of random DNA or RNA sequences and repeatedly enriches the fraction that binds a chosen target with high affinity and specificity. The “winners” are called aptamers—single-stranded nucleic acids that fold into 3D shapes capable of target recognition, often compared to “chemical antibodies,” but made by selection and synthesis rather than immune systems.  Core Concept: Darwinian Evolution in a Test Tube   SELEX is essentially variation + selection + amplification: Variation: Begin with a randomized oligonucleotide library (often ~10^13–10^16 unique sequences). Selection: Expose the library to the target; keep sequences that bind. Amplification: PCR (or RT-PCR for RNA workflows) amplifies binders to create the next-round pool. Increasing stringency: Each round tightens conditions (less target, harsher washes, more competitors), enriching the best binders over multiple cycles.   Most conventional SELEX workflows run multiple rounds (often roughly 6–15) before candidates are sequenced and characterized.  The Classic SELEX Workflow (Step-by-Step, With the “Why”)   1) Library design (the “starting universe”)   A typical library contains: A random region (e.g., N30–N60) that can…

    2025-12-07