biomarker detection | aptamer screening service|selexkmdbio.com
Info Center
  • Aptamer Fields: A Practical Knowledge Guide to the Science, Tools, and Applications of Aptamers

    “Aptamer fields” can be understood as the interconnected research and application areas where aptamers—short, single-stranded DNA or RNA molecules—are designed and used as highly selective binding agents (often described as “chemical antibodies”) for targets ranging from proteins and small molecules to whole cells.  This article explains what defines the aptamer fields, how aptamers are created, where they’re used, and what technical trends are shaping the space.   1) What Are Aptamers (and Why They Matter in Aptamer Fields)?   Aptamers are typically ~20–100 nucleotides long and fold into 3D structures that bind specific targets with high affinity and specificity. Unlike antibodies (biological proteins), aptamers are nucleic acids, which affects how they are discovered, synthesized, modified, and integrated into devices.  Key reasons aptamers have become a “field” rather than a niche tool: Programmability: sequence-controlled design and chemical modification Manufacturability: scalable synthesis routes compared with biological production Versatility: diagnostics, biosensing, therapeutics, imaging, and research reagents      2) The Core Engine: SELEX and How Aptamers Are Discovered   Most aptamers are generated using SELEX (Systematic Evolution of Ligands by EXponential enrichment), an iterative in-vitro selection process that enriches sequences that bind a chosen target. In common workflows, a large random library is…

    2025-12-09
  • Diagnostics: Developing Peptide Probes to Detect Biomarkers (A Practical, Science-First Guide)

    Diagnostics increasingly relies on biomarkers—measurable molecular signals such as proteins, peptides, nucleic acids, metabolites, or enzymatic activities—that correlate with disease presence, stage, or treatment response. To read those signals reliably in real samples (blood, saliva, urine, tissue), modern assays need a recognition element that can find the target selectively, bind strongly enough, and produce a measurable output. Alongside antibodies and nucleic acids (aptamers), peptide probes have become a powerful option because they are chemically programmable, compatible with many detection platforms, and can be engineered for stability and surface attachment.  This article explains how peptide probes are developed for biomarker detection, which design strategies are most common, and what technical pitfalls matter most in real diagnostic workflows.   1) What Is a “Peptide Probe” in Diagnostics?   A peptide probe is a designed short amino-acid sequence that either: Binds a biomarker (affinity peptide / targeting peptide / peptide aptamer concept), or Responds to a biomarker-related activity (for example, a protease-cleavable peptide that changes signal after enzymatic cutting), or Acts as a capture element on a surface to pull a biomarker out of complex samples for readout.   Compared with antibodies, peptides are usually easier to synthesize and modify (labels, linkers, anchors),…

    2025-12-05