Aptamers are short single-stranded DNA or RNA molecules that fold into 3D structures capable of binding targets (proteins, small molecules, cells, or even complex particles) with high specificity and affinity. “Aptamer methods” usually refers to the full pipeline: library design → selection (SELEX) → enrichment monitoring → sequencing & bioinformatics → candidate optimization → biophysical/functional validation → stability engineering. Modern platforms improve speed and hit quality by combining smarter selection pressures with microfluidics and next-generation sequencing. 1) Core Aptamer Selection Method: SELEX (Systematic Evolution of Ligands by EXponential Enrichment) 1.1 Classical SELEX workflow (baseline method) Start with a random oligonucleotide library (often 10^13–10^15 unique sequences) Incubate library with the target Partition bound vs unbound sequences Elute binders Amplify (PCR for DNA; RT-PCR + transcription for RNA) Repeat iterative rounds with increasing stringency until enrichment is achieved Why it works: each round increases the fraction of sequences that can bind under the imposed conditions (buffer, temperature, competitor molecules, etc.). Why it’s hard: classical SELEX can be slow, labor intensive, and prone to amplification bias—hence the rise of “advanced SELEX” platforms. 1.2 “Stringency engineering” (how you make aptamers useful) Selection success often depends less on the target itself…
Aptamers are short, single-stranded DNA or RNA sequences that fold into 3D shapes capable of binding specific targets—proteins, small molecules, ions, cells, or even complex mixtures—with high affinity and selectivity. Because they are chemically synthesized, readily modified, and often less immunogenic than protein binders, aptamers have matured into a versatile “molecular toolkit” used across diagnostics, biosensing, therapeutics, imaging, and bioprocessing. This article explains APTAMER APPLICATIONS from fundamentals to advanced use-cases, with an emphasis on how teams translate an aptamer sequence into a functioning assay, sensor, drug carrier, or imaging probe. 1) How Aptamers Are Created (Why Selection Method Shapes Applications) Most aptamers are discovered through SELEX (Systematic Evolution of Ligands by EXponential enrichment): iterative rounds of binding, separation, and amplification that enrich sequences best suited to a chosen target and conditions. Modern SELEX variants—such as cell-SELEX, microfluidic SELEX, and capillary electrophoresis SELEX—aim to shorten selection time, improve specificity, and better match real-world sample environments. The practical result is that application performance often depends as much on selection constraints (buffer, temperature, counter-selection targets, matrix effects) as on the final nucleotide sequence. Key takeaway: If the intended application involves serum, saliva, food extracts, or environmental water, designing SELEX conditions to…
CUSTOM APTAMER DISCOVERY & DEVELOPMENT is the process of creating target-specific single-stranded DNA or RNA aptamers—short nucleic acids that fold into 3D shapes capable of binding proteins, small molecules, cells, vesicles, or other targets with antibody-like selectivity. Most custom programs rely on SELEX (Systematic Evolution of Ligands by EXponential enrichment), then refine “hits” into robust, application-ready binders through sequencing-driven analysis and post-selection optimization. 1) What Aptamers Are (and Why They’re Used) Aptamers are typically ~15–90 nucleotides long and can be engineered to bind targets across a wide size range (from small molecules to whole cells). They’re attractive because they are chemically synthesized (batch-to-batch consistency), can be readily labeled (fluorophores, biotin, etc.), and are generally thermally stable and re-foldable—features that often simplify assay development and manufacturing. Common aptamer use cases Diagnostics & biosensors (capture probes, signal transducers, point-of-care formats) Targeted delivery & therapeutics research (cell-directed binding, payload delivery concepts) Affinity purification & analytical workflows (pull-downs, enrichment, separations) 2) The Core Workflow in Custom Aptamer Discovery A custom program is best thought of as a pipeline with four linked decisions: target format → selection strategy → analytics → optimization. Step A — Target Definition and “Bindability” Planning…
Aptamers are short, single-stranded nucleic acid molecules (DNA or RNA) that fold into specific 3D shapes and bind targets with high affinity and selectivity—often compared to how antibodies recognize antigens, but built from nucleic acids rather than proteins. Unlike a “generic DNA strand,” an aptamer’s function comes from structure: loops, stems, bulges, pseudoknots, and other motifs that create a binding surface matching a target’s geometry and chemistry. Targets can include proteins, peptides, small molecules, ions, and even whole cells (depending on the selection strategy). Why Aptamers Matter (and How They Differ From Antibodies) Aptamers are often described as “chemical antibodies,” but the differences are exactly why they’re valuable. Key advantages frequently highlighted Low immunogenicity (reduced risk of provoking immune responses) High stability and the ability to refold after denaturation in many cases Easy chemical synthesis (batch consistency, scalable manufacturing) Straightforward modification (labels, linkers, immobilization handles) Trade-offs you should know Nuclease sensitivity (especially RNA aptamers) can be a limitation in biological fluids unless stabilized. Selection bias can occur during discovery (e.g., PCR bias), meaning “best in the tube” isn’t always “best in reality.” Very high affinity does not automatically guarantee best real-world specificity; selection conditions matter. …