counter selection | aptamer screening service|selexkmdbio.com
Info Center
  • EXPERTISE IN APTAMERS TO SMALL MOLECULES: A Practical Knowledge Guide to Selection, Engineering, and Real-World Performance

    Small molecules are some of the most valuable—and most difficult—targets in molecular recognition. They include metabolites, drugs, toxins, cofactors, and signaling compounds that often weigh only a few hundred Daltons. Developing expertise in aptamers to small molecules means mastering a set of selection and validation strategies that differ substantially from protein-target aptamer work, because small molecules offer fewer contact points, weaker “handles” for separation, and more ways to generate false positives. This article explains how small-molecule aptamers are discovered, why selection is uniquely challenging, how advanced SELEX variants improve success rates, and what “good” looks like when you engineer an aptamer into a sensor, assay, or therapeutic concept.   1) What makes small-molecule aptamers special?   Aptamers are single-stranded DNA or RNA sequences that fold into 3D shapes able to bind a target through non-covalent interactions—hydrogen bonding, π–π stacking, electrostatics, and shape complementarity. For proteins, large surfaces provide many contacts, so binding can be robust even when the selection workflow is imperfect. Small molecules are different: Tiny binding interface: fewer interaction opportunities means affinity can be harder to evolve and easier to mis-measure.  Separation is tricky: in classic SELEX you often immobilize the target; immobilization can change the target’s presentation…

    2025-12-10
  • Negative Aptamer Selection: A Practical Guide to Improving Aptamer Specificity in SELEX

    Negative aptamer selection—often called negative selection or counter-selection—is a deliberate filtering step in SELEX(Systematic Evolution of Ligands by EXponential enrichment) designed to remove sequences that bind to the wrong things. Instead of enriching binders to your intended target, negative selection enriches your final pool for what you actually want in real-world use: high specificity, low background, and minimal cross-reactivity.  In modern aptamer discovery, negative selection is not “optional polish.” It is one of the most effective ways to prevent selection artifacts—like aptamers that bind to beads, linkers, tags, surfaces, common matrix components, or closely related off-target molecules—from dominating your pool.    1) What “Negative Aptamer Selection” Means (and Why It Exists)   During SELEX, you start with a huge randomized DNA/RNA library and iteratively enrich sequences that bind. The catch is that many sequences bind strongly to unintended components in the experimental system: immobilization substrates (e.g., beads, membranes) affinity tags or capture molecules (e.g., streptavidin–biotin systems) blockers, serum proteins, plastic, or assay buffers structurally similar molecules (analogs) that you must not bind   Negative selection introduces a decoy binding step: you expose the library to an unwanted target (or “negative target”), then discard the sequences that bind it and keep…

    2025-12-09
  • CELL-SELEX and Biomarker Discovery: A Practical, Knowledge-First Guide to Aptamer-Driven Target Finding

    CELL-SELEX (Cell-Based Systematic Evolution of Ligands by EXponential enrichment) is a selection strategy used to discover nucleic-acid aptamers—short single-stranded DNA or RNA molecules that fold into shapes capable of binding cellular targets with high affinity and specificity. What makes CELL-SELEX AND BIOMARKER DISCOVERY such a powerful pairing is that cell-SELEX can enrich binders against native cell-surface features (often membrane proteins, glycoproteins, lipids, or complex epitopes) without needing to know the target in advance. This is especially valuable in biomarker discovery, where the “best” marker may be unknown, heterogeneous, or highly dependent on the cellular context.    1) What CELL-SELEX Is (and Why It Matters for Biomarkers)   Traditional SELEX often starts with a purified target (e.g., a recombinant protein). In cell-SELEX, the “target” is a living cell population that represents a phenotype you care about—such as a disease subtype, drug-resistant cells, activated immune cells, or a specific differentiation stage. The selection process enriches aptamers that bind those cells while removing sequences that bind irrelevant or shared features. Why this matters for biomarkers: Native conformation is preserved. Cell-surface proteins keep their natural folding, post-translational modifications, and membrane context—features that can be lost in purified preparations.  Unbiased discovery. You can discover binding…

    2025-12-09